
AGCM Biases in Evaporation Regime: Impacts on Soil Moisture Memory and
Land–Atmosphere Feedback

SARITH P. P. MAHANAMA

Goddard Earth Sciences and Technology Center, University of Maryland, Baltimore County, Baltimore, and Global Modeling and
Assimilation Office, NASA Goddard Space Flight Center, Greenbelt, Maryland

RANDAL D. KOSTER

Global Modeling and Assimilation Office, NASA Goddard Space Flight Center, Greenbelt, Maryland

(Manuscript received 8 October 2004, in final form 24 March 2005)

ABSTRACT

Because precipitation and net radiation in an atmospheric general circulation model (AGCM) are typi-
cally biased relative to observations, the simulated evaporative regime of a region may be biased, with
consequent negative effects on the AGCM’s ability to translate an initialized soil moisture anomaly into an
improved seasonal prediction. These potential problems are investigated through extensive offline analyses
with the Mosaic land surface model (LSM). The LSM was first forced globally with a 15-yr observation-
based dataset. The simulation was then repeated after imposing a representative set of GCM climate biases
onto the forcings—the observational forcings were scaled so that their mean seasonal cycles matched those
simulated by the NASA Seasonal-to-Interannual Prediction Project (NSIPP-1; NASA Global Modeling and
Assimilation Office) AGCM over the same period. The AGCM’s climate biases do indeed lead to signifi-
cant biases in evaporative regime in certain regions, with the expected impacts on soil moisture memory
time scales. Furthermore, the offline simulations suggest that the biased forcing in the AGCM should
contribute to overestimated feedback in certain parts of North America—parts already identified in pre-
vious studies as having excessive feedback. The present study thus supports the notion that the reduction
of climate biases in the AGCM will lead to more appropriate translations of soil moisture initialization into
seasonal prediction skill.

1. Introduction

Evaporation underlies land–atmosphere interaction.
Evaporation (and associated variations in sensible heat
flux) can effectively translate a soil moisture anomaly
into an anomaly in atmospheric boundary layer condi-
tions and, as a result, into a precipitation anomaly. The
potential feedback of soil moisture on precipitation
through evaporation has been the subject of several
theoretical studies (e.g., Entekhabi et al. 1992; Rod-
riguez-Iturbe et al. 1991) and observational studies
(e.g., Namias 1959; Barnston and Schickedanz 1984;
Findell and Eltahir 1997; Salvucci et al. 2002).

Model-based feedback studies are especially preva-

lent. In some ways, models [e.g., atmospheric general
circulation models (AGCMs)] are particularly valuable
tools for land–atmosphere feedback studies, since they
offer two key advantages: (a) they provide complete
suites of data covering all aspects of the land–
atmosphere connection, including quantities (such as
evaporation rates) that are difficult to measure in na-
ture at large scales, and (b) the physics in a model can
be artificially altered for sensitivity studies, allowing
important mechanisms to be isolated and quantified.
The impact of soil moisture on precipitation has been
established in numerous AGCM studies (e.g., Koster et
al. 2000, 2004; Liu and Avissar 1999a,b; Dirmeyer 2000,
2003; Dirmeyer et al. 2003; Douville 2003; Schubert et
al. 2004).

Intuitively, for such modeling studies to be effective,
the background climate for an AGCM-based land–
atmosphere interaction study should be as realistic as
possible. Any free-running climate modeling system,
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however, is prone to biases. Gates et al. (1999) quanti-
fied the biases in 31 modeled climates as part of the
Atmospheric Model Intercomparison Project (AMIP).
Gates et al. (1999) found that the models are generally
too dry by more than 20% over large regions of the
major precipitation zones, and are also too wet in the
major dry zones in both December–January–February
(DJF) and June–July–August (JJA). Gates et al. (1999)
also noted that climate biases may result from errors in
the parameterization of clouds and their radiative in-
teractions, in the parameterization of convection and
precipitation, and in the representation of land surface
and hydrologic processes.

Simply put, climate biases in AGCMs are a fact of
life. Given their presence, one may naturally ask how
they affect the conclusions of model-based land–
atmosphere feedback studies. We address this question
in this paper. We focus in particular on the aspects of
feedback relevant to seasonal prediction—relevant to
the idea that knowledge of soil moisture anomalies at
the beginning of a seasonal forecast period could result
in increased skill in predicted precipitation. Koster and
Suarez (2003) noted two separate elements to the im-
pact of feedback on forecast skill: (a) the initialized
anomaly must be “remembered” well into the forecast
period, and (b) the atmosphere (e.g., precipitation-
generating processes) must respond in a predictable
way to the soil moisture anomaly. The simulation of
both elements, it turns out, is affected significantly by
climate biases, particularly by the way the evaporation
regime (the degree to which evaporation is controlled
by soil moisture supply versus evaporation demand) is
biased due to biases in simulated precipitation and in-
coming radiation.

Section 2 provides needed background on evapora-
tion regime and its relationship to soil moisture. Section
3 then shows how the climate biases in a representative
AGCM can lead to biases in the simulated evaporation
regime. Sections 4 and 5 treat, respectively, the impact
of evaporation regime biases on simulated soil moisture
memory and the response of precipitation to soil mois-
ture anomalies.

2. Background: Sensitivity of evaporation to soil
moisture in an AGCM

The land surface model (LSM) in a climate modeling
system computes evaporation fluxes as part of the sur-
face water and energy balance calculation using com-
plex parameterizations typically employing numerous
state variables and parameters. Nevertheless, every-
thing else being equal, evaporation intuitively should
either increase monotonically with soil moisture or be

insensitive to it. The full nature of the evaporation–soil
moisture relationship is illustrated by a revisit to the
idealized experiment of Mahanama and Koster (2003),
which investigated LSM behaviors under a wide range
of climates. In the version of the experiment examined
here, we focus on a surface element having a bare-soil
fraction of 30%, loam soil, and moderate topography.
Atmospheric forcing data for a 10 000-month perpetual
July experiment was prepared using Project for Inter-
comparison of Land Surface Parameterization Schemes
Phase 2c (PILPS-2c; Wood et al. 1998) July 1979 forc-
ings for the chosen location. A 10 000-month time se-
ries of monthly total precipitation was then randomly
generated with values ranging from 15 to 630 mm and
with a mean value of 180 mm. The monthly total pre-
cipitation was temporally disaggregated using the sub-
monthly distribution of the PILPS-2c July 1979 precipi-
tation for the same surface element. Then, the Mosaic
LSM (Koster and Suarez 1996) was forced for 10 000
months using the prepared precipitation time series
along with other PILPS-2c atmospheric forcings (see
Mahanama and Koster 2003 for full details). The same
experiment was repeated four times for four different
vegetation biomes: evergreen broadleaf, deciduous
broadleaf, needle leaf, and grassland.

Scatterplots of evaporation efficiency [E/Rnet, where
E is total evaporation (including transpiration, bare-soil
evaporation, and interception loss) and Rnet is net ra-
diation] versus the degree of saturation of soil moisture
(soil wetness) in the soil column (W) were made sepa-
rately for the four experiments using daily output. The
scatter in each plot is significant, but a simple binning
procedure reveals an underlying relationship. Figure 1
shows this relationship for the four experiments. All
four vegetation biomes show a common behavior: in
drier situations, evaporation efficiency is strongly sen-
sitive to soil moisture (measured as a wetness), whereas
in wetter situations, the sensitivity is diminished—the
slope (c) of the E/Rnet versus soil moisture relationship
is smaller. This behavior is not unexpected—in wetter
climates, evaporation is controlled more by atmo-
spheric demand than by soil moisture availability. In-
deed, the basic shape of the curves in Fig. 1 is consistent
with decades of understanding regarding soil-moisture-
controlled versus atmosphere-controlled evaporation
regimes (e.g., Manabe 1969; Budyko 1974; Eagleson
1978).

Note that an idealized experiment with highly diverse
rainfall forcing was used to generate the curves in Fig.
1 because the range of soil moistures achieved in a
GCM simulation is typically limited to a small fraction
of the total range. Consider the aforementioned rela-
tionship for grassland in Fig. 2. Overlaid on the plot is
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a representative soil moisture range from an AGCM
simulation—the range for a particular grid cell with in-
termediate soil moisture (mean soil moisture as a wet-
ness � 0.45). The plotted range is equal to twice the
simulated standard deviation of soil moisture at that
point.

The ranges typically achieved are small enough, rela-
tive to the total possible range, that a single slope (e.g.,
that of the dashed line in the figure) can effectively
characterize the local acting evaporation sensitivity to
soil moisture at the given point. Fitting a single slope to
simulated pairs of evaporation efficiency and soil mois-
ture values at a grid cell has indeed proven an effective
way of characterizing the behavior of a land surface
model in a climatic regime. Koster and Milly (1997)
used such fitted slopes to estimate annual evaporation
rates across a variety of models. Koster and Suarez

(2001) used such a slope to characterize soil moisture
memory, and Koster et al. (2004) used it to characterize
precipitation response to soil moisture anomalies. In
fact, these latter two studies together imply an interest-
ing balance required for the slope in the context of
precipitation prediction. For an initial soil moisture
anomaly to affect a future precipitation rate, the effec-
tive slope cannot be too large, for then the soil moisture
memory would be too low, and the slope cannot be too
small, for then evaporation (and thus precipitation)
would not be sensitive to the soil moisture anomaly.

The ability of a single slope to characterize the sen-
sitivity of evaporation efficiency to soil moisture and
the relevance of this slope to key aspects of the predic-
tion problem suggests an important question, alluded to
in the introduction. The question is illustrated in Fig. 3:
Can a bias in the AGCM’s climate forcing lead to a bias

FIG. 1. Evaporation efficiency vs the degree of saturation of soil moisture for four different vegetation biomes.
The daily values from each idealized, 10 000-month perpetual Jul experiment have been binned.
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in the acting slope (i.e., in the region’s evaporative re-
gime), a bias that can in turn negatively affect the
memory and feedback characteristics of the region rel-
evant to prediction? This question is addressed quanti-
tatively in the next three sections.

3. Effect of climate bias on evaporative regime

To quantify the impact of climate bias on evaporative
regime, a series of global offline experiments was per-
formed with the Mosaic land surface model. The earth’s
land surface was divided into a somewhat unusual grid,
a set of 36 716 contiguous hydrologic catchments estab-
lished from high-resolution (1 km) digital elevation
data (Verdin and Verdin 1999). The average size of
these surface elements is 3800 km2. We chose this grid
for convenience and efficiency; it allowed us to take
advantage of the experimental setup already employed
by Mahanama and Koster (2003). The results of the
present analysis would invariably be the same if we
employed a rectangular grid. Land cover and soil hy-
draulic properties for the surface elements were de-
rived from a variety of recent global datasets: vegeta-
tion classification was derived using the 1-km land

FIG. 2. Soil moisture statistics for a representative AGCM grid
cell overlaid on the bottom-right panel of Fig. 1. The solid vertical
line shows a mean soil moisture wetness of 0.45 for this grid cell,
while the dashed lines delimit a range standard deviation of soil
moisture there. The sloping dashed line shows that a linear rela-
tionship can approximate the soil moisture–evaporation relation-
ship within the cell.

FIG. 3. Schematic showing the potential impact of climate biases on the sensitivity of evaporation
efficiency to soil moisture.
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cover characteristics of Belward et al. (1999), and soil
texture classification came from the 5� � 5� global maps
of Reynolds et al. (1999).

Berg et al. (2005) merged European Centre for Me-
dium-Range Weather Forecasts (ECMWF) global re-
analyses of atmospheric forcings with observed fields
of precipitation and radiation to produce a global,
0.5°, 6-hourly forcing dataset. In our earlier study, we
interpolated this forcing (hereafter referred to as
the “OBS forcing”) onto the catchment grid and then
forced the Mosaic LSM over the period 1979–93
(see Mahanama and Koster 2003 for details). The
Mosaic LSM produced, as a result, global fields of
evaporation, net radiation, and soil moisture—enough
information to determine global fields of the sensi-
tivity of the evaporation efficiency (E/Rnet) to soil mois-
ture. The map of this sensitivity—the slope c—during
the period June through August is shown in Fig. 4a.
Again, throughout this paper, this slope is used to
characterize the evaporative regime of the land sur-

face—high values of c imply that evaporation is mois-
ture-limited, whereas low values imply that it is more
atmosphere-limited.

For the present study, we also repeated this offline
experiment after imposing GCM climate biases on the
OBS forcings—the total precipitation, convective pre-
cipitation, downward shortwave radiation, and down-
ward longwave radiation in the OBS dataset were
scaled so that their mean seasonal cycles matched those
simulated by the National Aeronautics and Space Ad-
ministration (NASA) Seasonal-to-Interannual Predic-
tion Project (NSIPP-1) atmospheric GCM over the
same period (1979–93).

The GCM climate biases are significant. Figure 5a
shows the global distribution of the imposed precipita-
tion biases, determined by subtracting the average JJA
precipitation in the OBS dataset from that of the
GCM’s climatology. Large positive biases (overesti-
mated precipitation in the GCM) can be seen in Central
America, over the Amazon basin, and in parts of south-

FIG. 4. (a) Global map of the slope c based on the offline simulation using OBS forcings. (b) Same as (a), but for the offline simulation
using biased GCM forcings. (c) Differences: c from biased forcings minus c from OBS forcings. (d) Regions where biases induce an
overall shift in evaporation regime, assuming transition c value of 1.0. Blue indicates a transition to an atmosphere-controlled regime,
and red indicates a transition to a soil moisture–controlled regime.
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FIG. 5. (top) AGCM biases in mean precipitation (JJA; in mm day�1). (middle) AGCM biases in the sum of downward shortwave
and downward longwave radiation (JJA; in W m�2). (bottom) GCM biases in dryness index (Rnet/�P, where � is the latent heat of
vaporization).
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ern Asia. Negative biases are mainly observed in other
tropical land areas. Figure 5b shows the bias in the sum
of downward solar and longwave radiation, again com-
puted for JJA by substracting the OBS data values from
the GCM climatology. The downward radiation forcing
in the GCM exceeds that in the observations over much
of the globe. Both precipitation and net radiation biases
collectively determine the operating climate regime at
any land element, so it is possible that the effects of a
precipitation bias are being canceled out by a net ra-
diation bias at some locations. The dryness index (Rnet/
�P, where � is the latent heat of vaporization and P is
precipitation; see Budyko 1974) is in some ways a more
representative index of the operating climate regime.
Figure 5c shows the global distribution of AGCM bi-
ases in dryness index.

The sensitivity of evaporation efficiency to soil mois-
ture (the slope c) derived from the biased forcing ex-
periment is shown in Fig. 4b. Figure 4c shows the global
distribution of the differences in the slopes obtained
from the two experiments—the change in the sensitivity
induced by biased atmospheric forcings. The forcing
biases have clearly caused slope changes throughout
the globe. Why do the slope differences occur where
they do in Fig. 4c? To a large extent, the plotted dif-
ferences in the figure are consistent with the dryness
index biases shown in Fig. 5c: higher c values tend to be
found in regions where the climate regime has shifted
to a drier climate (e.g., in the central United States and
Southeast Asia). Figure 6 shows the underlying rela-
tionships more clearly. Plotted in the figure are bin
curves showing, for different soil moisture levels, how
differences in the slope c relate to biases in forcing, as
characterized by bias-induced differences in dryness in-

dex. (Note that a fair amount of scatter is hidden by the
binning process.) For relatively high soil moisture (av-
erage degree of saturation, w, greater than 0.4), a de-
crease in dryness index, which tends to make the soil
even wetter, has little effect on c. In essence, for high
moisture contents, atmospheric demand controls the
evaporation, meaning that the slope is already close to
zero; biases that make the soil even wetter keep it at
zero. An increase in the dryness index, however, dries
the soil and thus brings evaporation into the soil mois-
ture–controlled regime, inducing a positive slope. Thus,
for wet soils experiencing an increase in dryness index,
the slope differences in Fig. 6 are positive. The reverse
logic applies for dry soils (w less than 0.2): climate bi-
ases induce a large reduction in slope only when they
make the soil moisture much wetter through a decrease
in dryness index, pushing evaporation into the atmo-
sphere-controlled regime.

As discussed in later sections, these slope biases can
have important implications for soil moisture memory
and land–atmosphere feedback characteristics in the
GCM. In some areas, the slope biases are indeed large
enough to force the regions altogether into the wrong
evaporative regime. For discussion purposes, assume
that the slope c � 1.0 serves as the transition point
between climates with evaporation rates controlled by
soil moisture supply (dry climates) and those with rates
controlled by atmospheric demand (wet climates). The
choice of this arbitrary (but representative—other
choices in the neighborhood of c � 1 would give similar
patterns) value allows us to determine, through a com-
parison of the slopes obtained in the two experiments,
where the biases in the coupled modeling system (in the
AGCM) lead to an improper shift from one evapora-
tive regime to the other (at least in the context of the
modeling system used). Figure 4d shows in red those
regions that are incorrectly treated as soil moisture con-
trolled regions in the GCM. Similarly, the blue areas in
the figure are where the GCM incorrectly controls
evaporation through atmospheric demand. We empha-
size, however, that a full regime shift is not necessary
for the slope bias to have an important impact on the
predictability elements.

4. Memory analysis

Here we examine how a bias in the evaporation sen-
sitivity slope can affect the simulated soil moisture
memory. Koster and Suarez (2001) and Mahanama and
Koster (2003) showed that simulated soil moisture
memory can be well approximated with the equation

FIG. 6. Differences in the slope c vs biases in forcings (as char-
acterized by biases in dryness index) for different soil moisture
levels: lines were plotted through simple binning.
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where n is the month of the year, w is the soil wetness,
Cs is the column’s water holding capacity, Rn and Pn are
the accumulated net radiation and precipitation during
the month, c is the slope of the evaporation efficiency
versus soil moisture relationship, a is the slope of the
runoff efficiency versus soil moisture relationship, and
Fn is a particular combination of forcing and model
parameters. Equation (1) is, in essence, a generalization
of the memory equation devised by Delworth and
Manabe (1988); it implies that the memory is controlled
by four aspects of the system: (a) the seasonality of the
atmospheric forcing, (b) the sensitivity of evaporation
to soil moisture, (c) the sensitivity of runoff to soil mois-
ture, and (d) persistence in atmospheric forcing, as per-
haps induced through land–atmosphere feedback. The
“explicit” form of this semiexplicit equation,
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is less numerically dependable but shows a little more
clearly the relationship between soil moisture memory
and evaporative regime, as characterized by the slope c.
Simply put, as the slope c increases—as evaporation
becomes more sensitive to soil moisture—soil moisture
memory decreases.

Biases in c associated with GCM climate biases
should thus produce biases in memory. Is this seen in
the results? Figure 7a shows the global distribution of
one-month lagged autocorrelation in soil moisture as
produced from the offline simulation using the OBS
forcings. (These are the actual autocorrelations, not
those estimated with the equations above.) The corre-
sponding field in Fig. 7b was generated from the simu-
lation using biased forcing. Figure 7c shows the differ-
ences between the two fields; it thus shows the biases in
memory induced by the biases in the forcings. Soil
moisture memory in the AGCM is apparently biased
low (at least subject to the physics imposed in the LSM)
in the Great Plains and Pacific Northwest of the United
States, around the Bay of Bengal, and across a thin
zonal band in central Asia. The memory is biased high
in eastern Asia and in parts of the Sahel.

A comparison of Figs. 7c and 4c is suggestive—
memory tends to be biased low in areas where the slope
c is biased high. This is quantitatively demonstrated

with the scatterplot in Fig. 8, in which bias in autocor-
relation is plotted against bias in c. Although the scatter
is large (r2 � 0.24), the underlying relationship is clear
and statistically significant—soil moisture memory
tends to increase when the slope c decreases.

The impact of the GCM climate biases on the simu-
lated soil moisture memory is now analyzed to isolate
the impact of each component forcing. Three supple-
mental offline global simulations were performed with
the Mosaic LSM to determine the impact of 1) biased
downward shortwave radiation alone, 2) biased down-
ward longwave radiation alone, and 3) biased precipi-
tation alone on soil moisture memory.

Global fields of soil moisture memory were com-
puted using the JJA simulations for each of these
supplemental experiments, and each memory field was
compared to that produced with the unbiased OBS
forcing. The resulting biases in soil moisture memory
are plotted side-by-side with biases in c values for each
of the supplemental experiments (Fig. 9). Comparison
of the panels on the left-hand side in Fig. 9 [(a), (c), and
(e)] shows that the GCM precipitation biases are re-
sponsible for most of the biases in simulated memory.
Similarly, the panels on the right-hand side of the figure
show that the biased precipitation causes most of the
bias in the operating evaporation regime. A compari-
son of Figs. 9f and 5a (GCM precipitation bias) further
underscores how an excessive precipitation can force
the evaporation system into a more atmosphere-
controlled regime.

We note in addition that changes in runoff efficiency
could also impact the memory, as indicated by Eqs. (1)
and (2). Because the emphasis of this paper is on the
sensitivity of evaporation to soil moisture, we do not
elaborate the runoff effects here.

5. Analysis of atmospheric response

In the previous section, we discussed the impact of
GCM climate biases on simulated soil moisture
memory. Characterizing the impact of the biases on
precipitation’s responsiveness to soil moisture anoma-
lies is also of interest—for a soil moisture initialization
to provide skill to a seasonal precipitation forecast,
both soil moisture memory and precipitation respon-
siveness are needed. Here, since offline simulations are
used to characterize evaporation regime biases, their
impacts on precipitation responsiveness are examined
indirectly.

Using a 50-yr observational precipitation dataset cov-
ering the United States, Koster et al. (2003) found in-
direct evidence of land–atmosphere feedback in nature,
that is, evidence that soil moisture anomalies affect pre-
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FIG. 7. (a) One-month-lagged autocorrelations of soil moisture, 	, as obtained from the offline simulation with OBS forcings. (b)
Same, but as obtained with the offline simulation using the biased forcings. (c) Differences: resulting biases in the one-month-lagged
autocorrelation of soil moisture.
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cipitation. Here, we reproduce from that study the au-
tocorrelation in time of precipitation (between twice
removed pentad totals—e.g., correlation between pre-
cipitation amounts in 1–5 and 11–15 July, between
those in 6–10 and 16–20 July and so on) for the AGCM
in July (Fig. 10a) and for observations in July (Fig. 10b).
The autocorrelations are an indication of feedback (see
Koster et al. 2003 for details). Differences in precipita-
tion autocorrelation (AGCM minus observed) are plot-
ted in Fig. 10c. The AGCM precipitation correlations
are clearly excessive over much of the United States,
indicating that the simulated feedback is too strong.
Nevertheless, the presence of autocorrelations in the
observations does suggest some real-world feedback.

Koster and Suarez (2003) identified three main fac-
tors controlling the response of precipitation to soil
moisture anomalies: 1) the size of the soil moisture
anomaly, 2) the product of the mean net radiation
(Rnet) and the slope of the evaporation efficiency versus
soil moisture relationship (c), and 3) the convective
fraction. According to Koster and Suarez (2003) each
of these factors must be sufficiently large for land–
atmosphere feedback to occur. The second factor, of
course, is directly related to the evaporative regime.

Figure 10d shows the bias-induced differences in the
slope c (i.e., in the evaporative regime) over the United
States (zoomed-in from Fig. 4c). Comparing Figs. 10c
and 10d shows that the region where feedback is exces-
sive largely overlaps the region where the slope c is

excessive—that is, the region where, according to the
arguments of Koster and Suarez (2003), the feedback
should indeed be excessive. The comparison of Figs.
10c and 10d does not, of course, constitute proof that
AGCM climate biases in the central United States lead
to excessive feedback there. The feedback could be too
large, for example, because of the convection and
boundary layer parameterizations employed in the
model. Still, given the findings of Koster and Suarez
(2003), a correction of the climate biases in the central
United States should adjust the feedback strength in
the proper direction.

6. Discussion and summary

In this paper, we investigated the impact of AGCM
climate biases on the sensitivity of evaporation to soil
moisture. We then examined how bias in the evapora-
tion sensitivity can in turn affect soil moisture memory
and land–atmosphere feedback.

Our experiments were performed offline for a very
simple reason: we needed to characterize the evapora-
tion sensitivity under unbiased climatic forcing, which is
next to impossible to achieve in a free-running coupled
simulation. Arguably, the offline nature of the experi-
ments limits our analysis. It certainly limits our exami-
nation in section 5 of precipitation response to soil
moisture variations, for while a positive evaporation
anomaly may induce a positive precipitation anomaly

FIG. 8. Scatterplot showing how biases in the slope c relate to biases in the
one-month-lagged autocorrelations of soil moisture (	).
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FIG. 9. The impact of each component forcing bias on soil moisture memory (	). (a) Differences in 	 due to biased AGCM shortwave
radiation. (b) Differences in the slope c due to biased AGCM shortwave radiation. (c) and (d) Same as (a) and (b), but for biased
AGCM downward longwave radiation. (e) and (f) Same as (a) and (b), but for biased AGCM precipitation.
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through land–atmosphere feedback, as assumed in the
analysis, it can conceivably, under some conditions, in-
crease atmospheric stability and thus cause a decrease
in precipitation. An offline simulation cannot, of
course, predict the direction of the impact. Still, any
predictable impact (positive or negative) of soil mois-
ture on precipitation in a seasonal forecast system will
depend on how sensitive evaporation, as a proxy for the
full energy balance, is to variations in soil moisture, and
quantifying this sensitivity and its bias is the key focus
of this paper. Note that the offline framework is fully
adequate for our analysis of the impacts of climate bias
on soil moisture memory, a key element of land–
atmosphere interaction.

Given the complexity of the interwoven physical pro-
cesses being modeled, climate biases will be found in
any modeling system. Those examined here, from a
specific climate model, are representative. We do not
attempt here to identify the sources of the climate bi-
ases. The biases have many sources; indeed, biases in
precipitation and radiation can be induced by the land

model itself through land–atmosphere feedback. The
land model used has been tested offline in a series of
experiments under PILPS (e.g., Chen et al. 1997; Wood
et al. 1998; Liang et al. 1998); its own biases are repre-
sentative of LSMs in general.

Throughout this paper, the sensitivity of evaporation
efficiency to soil moisture in an LSM is characterized
with the slope c, an empirically fitted quantity com-
puted at each land element using output from extensive
model simulations. Figure 4c in section 3 demonstrates
that existing AGCM biases affect the slope c and thus
the operating evaporative regime in varying degrees.
Figure 4d shows that in some regions of the globe, the
climate biases fully shift the evaporative regime from
being atmosphere-controlled to soil moisture–con-
trolled or vice versa. Figures 5c and 6 show that the
geographical variations in the biases of the slope c are
determined in large part by the geographical variations
in the dryness index bias, defined in large part by the
precipitation and downwelling radiation biases in the
model.

FIG. 10. (a) Correlations between twice-removed pentad precipitation, as produced by the AGCM in Jul (from Koster et al. 2003).
(b) Same as (a), but for observational precipitation data (from Koster et al. 2003). (c) Differences in precipitation correlations: (a) minus
(b). (d) Differences in slope c between the experiments with biased GCM and OBS forcings.
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The connection between biases in evaporative re-
gime and simulated soil moisture memory was explored
in section 4. Figure 8 shows that, in general, a reduction
in evaporation sensitivity (i.e., in the slope c) leads to an
increase in soil moisture memory, as expected from the
analytical treatment of Koster and Suarez (2001). The
biases in soil moisture memory have important impli-
cations for seasonal precipitation forecasts in a coupled
modeling system. An overly low soil moisture memory,
for example, will improperly limit the effectiveness of
the soil moisture initialization.

The impact of biases in evaporative regime on the
responsiveness of precipitation to soil moisture anoma-
lies was explored in section 5. Figure 10 shows a con-
nection between excessive land–atmosphere interaction
in the AGCM examined and a bias-induced excess in
the slope c. Elimination of climate biases in the central
United States should reduce the excessive feedback,
though perhaps not eliminate it.

Forcing the LSM globally offline in this analysis is
computationally much less expensive than employing
the full atmospheric GCM, yet it still allows us to emu-
late land surface processes as they would occur in the
coupled system. The approach used here can be used by
any atmospheric GCM group to examine inexpensively
the impacts of their own biases on forecast skill. Ongo-
ing efforts, such as the Global Soil Wetness Project-2
(GSWP-2 2002), the Global Land Data Assimilation
System (Rodell et al. 2004), and the Land Information
System (LIS; http://lis.gsfc.nasa.gov), in which numer-
ous LSMs are run offline globally with atmospheric
forcings, could provide the framework for enhanced
explorations of the impact of AGCM biases on the el-
ements of prediction.
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